Skip to contents

The method should analyze source data structure, generate proper filters based on the data (e.g. column types) and attach them to source.

Usage

autofilter(source, attach_as = c("step", "meta"), ...)

# S3 method for default
autofilter(source, ...)

# S3 method for tblist
autofilter(source, attach_as = c("step", "meta"), ...)

Arguments

source

Source object.

attach_as

Choose whether the filters should be attached as a new step, or list of available filters (used in filtering panel when `new_step = "configure"`). By default in step.

...

Extra arguments passed to a specific method.

Value

Source object having step configuration attached.

See also

Examples

library(magrittr)
library(cohortBuilder)
#> 
#> Attaching package: ‘cohortBuilder’
#> The following objects are masked from ‘package:stats’:
#> 
#>     filter, step
library(shinyCohortBuilder)

iris_source <- set_source(tblist(iris = iris)) %>%
  autofilter()
iris_cohort <- cohort(iris_source)
sum_up(iris_cohort)
#> >> Step ID: 1
#> -> Filter ID: MWLEF1727431139388
#>    Filter Type: range
#>    Filter Parameters:
#>      dataset: iris
#>      variable: Sepal.Length
#>      range: NA
#>      keep_na: TRUE
#>      description: 
#>      active: TRUE
#> -> Filter ID: OODFI1727431139388
#>    Filter Type: range
#>    Filter Parameters:
#>      dataset: iris
#>      variable: Sepal.Width
#>      range: NA
#>      keep_na: TRUE
#>      description: 
#>      active: TRUE
#> -> Filter ID: EEXOM1727431139389
#>    Filter Type: range
#>    Filter Parameters:
#>      dataset: iris
#>      variable: Petal.Length
#>      range: NA
#>      keep_na: TRUE
#>      description: 
#>      active: TRUE
#> -> Filter ID: BWKKE1727431139389
#>    Filter Type: range
#>    Filter Parameters:
#>      dataset: iris
#>      variable: Petal.Width
#>      range: NA
#>      keep_na: TRUE
#>      description: 
#>      active: TRUE
#> -> Filter ID: ULBFD1727431139390
#>    Filter Type: discrete
#>    Filter Parameters:
#>      dataset: iris
#>      variable: Species
#>      value: NA
#>      keep_na: TRUE
#>      description: 
#>      active: TRUE

if (interactive()) {
  library(shiny)

  ui <- fluidPage(
    cb_ui("mycoh")
  )

  server <- function(input, output, session) {
    cb_server("mycoh", cohort = iris_cohort)
  }

  shinyApp(ui, server)
}