cohortBuilder
package is adapted to work with various
data sources and custom backends. Currently there exists one official
extension cohortBuilder.db
package that allows you to use
cohortBuilder
with database connections.
The goal of this document is to explain how to create custom
extensions to cohortBuilder
.
In general to create the custom layer you need to:
- Define set of S3 methods operating on your custom source.
- Define selected filters (see
vignette("custom-filters")
).
It’s recommended to include all of the methods in your custom R package.
Before you start creating a new layer, you need to choose what data (connection) should your layer operate on.
For example, cohortBuilder uses tblist
class object to
operate on list of data frames , or db
class for operating
on database connections.
To start with create a function that will take required parameters to
define data connection, such as tblist
or
dbtables
in case of cohortBuilder.db
. The
function should return an object of selected class which is used to
define required extension methods.
Below we describe all the required and optional methods you need to define within the created package.
set_source
- method used for defining a new source
Required parameters:
dtconn
Details:
- Define the method calling
Source$new
inside. - Declare necessary parameters used for defining data source (and pass
them to
Source$new
). The arguments are then available at source$attributes object. - If valid, you may declare
primary_keys
andbinding_keys
parameters (seevignette("binding-keys")
). - It’s also worth to declare
source_code
parameter that allows users to define code for creating source (visible in reproducible code) anddescription
storing list of useful source objects descriptions.
Example:
-
cohortBuilder
-tblist
object (same forcohortBuilder.db
-db
object)
set_source.tblist <- function(dtconn, primary_keys = NULL, binding_keys = NULL,
source_code = NULL, description = NULL, ...) {
Source$new(
dtconn, primary_keys = primary_keys, binding_keys = binding_keys,
source_code = source_code, description = description,
...
)
}
.init_step
- structure data passed between filtering steps
Required parameters:
-
source
- Source object
Details:
- Within the function body define how data should be extracted from source, and structured.
- A structure of the output is then used as an input for filter’s
method (
data_object
argument).
Examples:
-
cohortBuilder
- ‘tblist’ class. Operating on list of tables in each step.
.init_step.tblist <- function(source, ...) {
source$dtconn
}
-
cohortBuilder.db
- ‘db’ class.
cohortBuilder.db
operates on db
class
object which is list of connection
, tables
and
schema
fields.
.init_step.db <- function(source) {
purrr::map(
stats::setNames(source$dtconn$tables, source$dtconn$tables),
function(table) {
tbl_conn <- dplyr::tbl(
source$dtconn$connection,
dbplyr::in_schema(source$dtconn$schema, table)
)
attr(tbl_conn, "tbl_name") <- table
tbl_conn
}
)
}
.pre_filtering
(optional) - modify data object before filtering
Required parameters:
-
source
, -
data_object
- an object following the structure of.init_step
, -
step_id
- id of the filtering step
Details:
- An optional method used to prepare data for filtering (cleaning up attributes, creating middle step objects etc.).
Examples:
-
cohortBuilder
- tblist class. Cleaning upfiltered
attribute for new step data.
.pre_filtering.tblist <- function(source, data_object, step_id) {
for (dataset in names(data_object)) {
attr(data_object[[dataset]], "filtered") <- FALSE
}
return(data_object)
}
-
cohortBuilder.db
- creating temp tables for the current step in database and cleaning upfiltered
attributes.
.pre_filtering.db <- function(source, data_object, step_id) {
purrr::map(
stats::setNames(source$dtconn$tables, source$dtconn$tables),
function(table) {
table_name <- tmp_table_name(table, step_id)
DBI::dbRemoveTable(source$dtconn$conn, table_name, temporary = TRUE, fail_if_missing = FALSE)
attr(data_object[[table]], "filtered") <- FALSE
return(data_object[[table]])
}
)
}
.post_filtering
(optional) - data object modification after filtering (before running binding).
Required parameters:
- source,
- data_object - an object following the structure of
.init_step
, - step_id - id of the filtering step
.post_binding
(optional) - data object modification after running binding.
Required parameters:
- source,
- data_object - an object following the structure of
.init_step
, - step_id - id of the filtering step
.collect_data
- define how to collect data object into R.
Required parameters:
- source,
- data_object - an object following the structure of
.init_step
Details:
-
cohortBuilder
’s equivalent ofcollect
method known for sourcing the object into R memory when working with remote environment (e.g. database). - When operating in R memory it’s enough to return
data_object
.
Examples:
-
cohortBuilder
- operating in R memory, so returndata_object
.
.collect_data.tblist <- function(source, data_object) {
data_object
}
-
cohortBuilder.db
- collect tables from database and return as a named list.
.collect_data.db <- function(source, data_object) {
purrr::map(
stats::setNames(source$dtconn$tables, source$dtconn$tables),
~dplyr::collect(data_object[[.x]])
)
}
.get_stats
- collect data object stats
Required parameters:
-
source
, data_object
Details:
- There are no obligatory statistics to be returned.
- The calculated statistic is cached within Cohort object after each step filtering.
- Returned stats plays mostly read-only role. The only situation the
stats are used is within
.get_attrition_count
andshinyCohortBuilder
integration.
Examples:
-
cohortBuilder
- operating in R memory, so returndata_object
.
.get_stats.tblist <- function(source, data_object) {
dataset_names <- names(source$dtconn)
dataset_names %>%
purrr::map(
~ list(n_rows = nrow(data_object[[.x]]))
) %>%
stats::setNames(dataset_names)
}
-
cohortBuilder.db
- collect tables from database and return as a named list.
.get_stats.db <- function(source, data_object) {
dataset_names <- source$dtconn$tables
dataset_names %>%
purrr::map(
~ list(
n_rows = data_object[[.x]] %>%
dplyr::summarise(n = n()) %>%
dplyr::collect() %>%
dplyr::pull(n) %>%
as.integer()
)
) %>%
stats::setNames(dataset_names)
}
.run_binding
- method defining how binding should be handled
Required parameters:
-
source
, -
binding_key
- binding key definition, -
data_object_pre
- data object state before filtering in the current step, -
data_object_post
- data object state after filtering in the current step (including effect of previous bindings)
Details:
- Binding is run after applying all the filters in the current
filtering step (and applying
.post_filtering
if defined). - When filtering is finished, binding loop starts iterating over all
the defined bindings.
.run_binding
takes care of handling a single iteration. - The returned bound data, should preserve the structure of
.init_step
method output. - You should preserve the assumed binding rules described in bindings-keys (i.e. handling
post = TRUE/FALSE
,activate = TRUE/FALSE
andfiltered
attribute) but this is not obligatory.
Examples:
cohortBuilder
.run_binding.tblist <- function(source, binding_key, data_object_pre, data_object_post, ...) {
binding_dataset <- binding_key$update$dataset
dependent_datasets <- names(binding_key$data_keys)
active_datasets <- data_object_post %>%
purrr::keep(~ attr(., "filtered")) %>%
names()
if (!any(dependent_datasets %in% active_datasets)) {
return(data_object_post)
}
key_values <- NULL
common_key_names <- paste0("key_", seq_along(binding_key$data_keys[[1]]$key))
for (dependent_dataset in dependent_datasets) {
key_names <- binding_key$data_keys[[dependent_dataset]]$key
tmp_key_values <- dplyr::distinct(data_object_post[[dependent_dataset]][, key_names, drop = FALSE]) %>%
stats::setNames(common_key_names)
if (is.null(key_values)) {
key_values <- tmp_key_values
} else {
key_values <- dplyr::inner_join(key_values, tmp_key_values, by = common_key_names)
}
}
data_object_post[[binding_dataset]] <- dplyr::inner_join(
switch(
as.character(binding_key$post),
"FALSE" = data_object_pre[[binding_dataset]],
"TRUE" = data_object_post[[binding_dataset]]
),
key_values,
by = stats::setNames(common_key_names, binding_key$update$key)
)
if (binding_key$activate) {
attr(data_object_post[[binding_dataset]], "filtered") <- TRUE
}
return(data_object_post)
}
-
cohortBuilder.db
- slight modification of the above function
.get_attrition_count
- define how to get metric used for attrition data plot
Required parameters:
-
source
, -
data_stats
- statistics related to each step data - list of.get_stats
results for each step (and original data, assigned tostep_id = 0
),
Details:
- The output should return vector of length
n+1
wheren
is number of steps. The first element of the vector should describe statistic for the base, unfiltered data. - You may define additional parameters which can be passed to
attrition
method of Cohort object (e.g.dataset
in the below example).
Examples:
cohortBuilder
.get_attrition_count.tblist <- function(source, data_stats, dataset, ...) {
data_stats %>%
purrr::map_int(~.[[dataset]][["n_rows"]])
}
-
cohortBuilder.db
- same as above
.get_attrition_label
- define label displayed in attrition plot for the specified step
Required parameters:
-
source
, -
step_id
- id of the step ("0"
for original data case), -
step_filters
- list storing filters configuration for the selected step (NULL
for original data case),
Details:
- Please remember to define label for the initial data state
(
step_id = "0"
case). - You may define additional parameters which can be passed to
attrition
method of Cohort object (e.g.dataset
in the below example).
Examples:
cohortBuilder
get_attrition_label.tblist <- function(source, step_id, step_filters, dataset, ...) {
pkey <- source$primary_keys
binding_keys <- source$binding_keys
if (step_id == "0") {
if (is.null(pkey)) {
return(dataset)
} else {
dataset_pkey <- .get_item(pkey, "dataset", dataset)[1][[1]]$key
if (is.null(dataset_pkey)) return(dataset)
return(glue::glue("{dataset}\n primary key: {paste(dataset_pkey, collapse = ', ')}"))
}
}
filters_section <- step_filters %>%
purrr::keep(~.$dataset == dataset) %>%
purrr::map(~get_attrition_filter_label(.$name, .$value_name, .$value)) %>%
paste(collapse = "\n")
bind_keys_section <- ""
if (!is.null(binding_keys)) {
dependent_datasets <- .get_item(
binding_keys, attribute = "update", value = dataset,
operator = function(value, target) {
value == target$dataset
}
) %>%
purrr::map(~names(.[["data_keys"]])) %>%
unlist() %>%
unique()
if (length(dependent_datasets) > 0) {
bind_keys_section <- glue::glue(
"\nData linked with external datasets: {paste(dependent_datasets, collapse = ', ')}",
.trim = FALSE
)
}
}
gsub(
"\n$",
"",
glue::glue("Step: {step_id}\n{filters_section}{bind_keys_section}")
)
}
-
cohortBuilder.db
- same as above